MSX-DOS 2 System Specification

CONTENTS Page
1. INErodUCLION sisossavonsnsossssssosimosnainsons 3
% § System Requirementsciceeeeaeannns 3

pp System Organizationc.ciceeecennnn 4
2.1 The Disk ROM ..ttt eeeeeeacoaosanoessns 4
2.2 Initialization and Boot Procedure 5
2.3 Disk BASIC Environmentccecececococss 7
2.3.1 Function Calls cscessssvosoonsoosesss 7
2.3.2 DiSKk EIFFOrS e cveeeooocccaccccaconcascs 8
2.3.3 Program Termination 9

2.4 MSX-DOS ENVironment ...ceeecececocoscocscss 10
2.5 INnterrupts ... ceieeeeeceecnecaccccacnanns 11

3. Disk Device INnterface ...ccceccecosscscscccccs 13
3.1 Publics and Externalsccccecoaceccss 13
3.2 Disk Driver Initialization ...c.ceeeeecees 15
3.3 Disk Read and Write Routine 16
3.4 Disk Change Detection Routine 17
3.5 Get Disk Parameter Block Routine 18
3.6 Disk Format Routinesc.ocueeeeeennnnn 18
3.7 Boot Sector Format ..eeceecececcssccccccsss 20
3.8 Summary of Changesc.ccceeeeencacnnan 21

This manual describes the organization and various
technical details of MSX-DOS version 2.00.

Copyright (1986) ASCII Corporation
Copyright (1986) IS Systems Ltd.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 2

MSX-DOS 2 System Specification 1. Introduction

1. INTRODUCTION

This document describes various general aspects of the
MSX-DOS 2.00 system which are not covered by the user
documentation. Most of the topics covered are internal-
technical details which should not be of interest to users
of the system. They are relevant for people modifying or
installing the system. In particular this document
contains a specification of the device driver interface
which is required by OEMs who wish to install the system on
their own hardware.

The following documents should be read in conjunction
with this document:

MSX-DOS 2 - Command Specification

MSX-DOS 2 - Function Specification
MSX-DOS 2 - Program Interface Specification

1.1 SYSTEM REQUIREMENTS

The hardware requirements for running the MSX-DOS 2
system are as follows:

= An MSX2 compatible machine
- Must contain the mapper chip option
- Minimum of 128K of mapped RAM
The system can run without any disk controller hardware,
using the built in RAM disk and disk BASIC. However

normally a system will also contain a disk controller with
at least one disk drive.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 3

MSX-DOS 2 System Specification 2. System Organisation

2

1

SYSTEM ORGANIZATION

The MSX-DOS 2 system is provided in two parts. The 32k
disk ROM which contains the mapper support, DOS Kernel,
disk BASIC and disk driver, and the system files
"MSXDOS2.SYS" and "COMMAND2.COM" which provide the CP/M
compatible transient program environment and the command
interpreter. There are also some separate utility programs
provided.

THE DISK ROM

The disk ROM can reside either in an external cartridge
or inside the MSX2 machine, in any primary or expanded
slot. It is divided into two 16k sections which must be in
page-l and page-2 of the same slot.

The DOS kernel is -contained in the ROM in page-2
(8000h...BFFFh), but is copied at initialization time to a
mapper RAM segment and actually executes in this RAM
segment in page-0 (0000h...3FFFh). Whenever this code is
executing, another mapper RAM segment called the kernel
data segment must be present in page-2.

The other half of the ROM is in page-l (4000h...7FFFh)
and contains initialization code, disk BASIC, the RAM disk
driver and (usually) a disk driver module supplied by the
OEM. This code executes directly out of the ROM in page-1l
when required.

There may be more than one disk ROM in the system and at
initialization time each one will be called in turn. The
first one to be called will become the "master disk ROM"
and will be the one which runs disk BASIC and the DOS
kernel. The others will become slave disk ROMs and only
their disk driver modules will be used. The system can
support up to four disk driver cartridges with one driver
in each, and each driver can support any number of physical
drives up to a total of eight. These limits include the
disk driver in the master ROM if there is one. The RAM
disk is included in the limit of eight drives, but does not
count as taking up one of the four slots.

The system is fully compatible with MSX-DOS 1 disk
drivers and so a slave cartridge can contain an MSX-DOS 1

ROM. However there are performance benefits to be gained
by improving the disk drivers so this should be regarded as
an interim solution. If old and new ROMs are mixed then

care must be taken to ensure that the slots are arranged
such that a new ROM is initialized first, since otherwise
the old MSX-DOS 1 system will run.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 4

MSX-DOS 2 System Specification 2.2. Initialisation

2.2 INITIALIZATION AND BOOT PROCEDURE

As described above, the first disk ROM to be initialized
will set itself up as the master ROM and will control the
disk system. This ROM gets control via the "run clear"
hook just before MSX BASIC starts up. What follows is a
description of the initialization and boot procedure which
this ROM carries out.

The fixed workspace and some other memory areas are
allocated in system RAM by moving "HIMEM" downwards.
This allocation includes several hundred bytes which is
used for various mapper support and slot handling routines.
This is necessary because the DOS kernel runs in page-0 and
so when it is running the normal MSX BIOS slot handling
routines are not available. The kernel code segment
contains slot switching and interrupt entry points.

The two highest numbered mapper RAM segments are
allocated permanently as the "kernel data segment” and the
"kernel code segment", and the 16k DOS kernel 1is copied
from page-2 of the master ROM to the kernel code segment.
This code is then called in page-0 to do further
initialization which includes setting up all of the data
structures and variables which are required in the kernel
data segment in page-2. Once this has been done, the DOS
kernel is able to execute function calls.

The kernel code and data segments are then paged out and
the disk BASIC environment set wup. This consists of
allocating various buffers in page-3 and setting up an
inter-slot jump via address 0F37Dh for doing function
calls. The code at OF37Dh does not simply call the DOS
kernel because it must do slot switching, paging, stack
switching and also copy parameters to and from buffers in
page-3. Also routines are set up to handle disk errors and
program termination in an MSX-DOS 1 compatible way (using
the "DISKVECT" and "BREAKVECT" vectors) . See section 2.3
for more details about the disk BASIC environment and the
OF37Dh function entry point.

At this point the basic system initialization |is
completed and it now goes on to the boot procedure which
will either start up disk BASIC or MSX-DOS. The stack is
switched to a temporary stack at address C200h for the boot
procedure.

The disk ROM checks to see if the "H.STKE" hook (address
OFEDAh) is still a 2z-80 "RET" instruction (ocoh) . If not
then a cartridge must have set the hook to get control, so
the ROM initializes disk BASIC and jumps to this hook.
Also if there is any cartridge containing BASIC text, then
disk BASIC is initialized and the BASIC program is
executed.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 5

MSX-DOS 2 System Specification 2.2. 1Initialisation

After this the system attempts to boot up MSX-DOS. This
is a two stage process. The first stage consists of trying
to read a boot sector from each disk drive in turn.. If one
is read successfully and if the first byte is either EBh or
E9h (8086 jump instructions!) then the first 100h bytes are
copied to address C000h (just below the temporary stack),

and location COlEh is called with carry clear. This gives
dedicated non MSX-DOS applications a chance to start up in
the disk BASIC environment. Normally this code will just
return. o

The second stage of booting up occurs only if a boot
sector was successfully read. If no boot sector was read
then disk BASIC is started up. Assuming that a boot sector
was read, the system selects this drive as the default and
looks for a file called "MSXDOS2.SYS" on the root directory
of this drive. If the file is not there then the system
looks on each drive in turn for the "MSXDOS2.SYS" file. If
the file is not found at all then disk BASIC is started up.

If the "MSXDOS2.SYS" file is found then it is read into
page-0 starting at address 0100h and jumped to. The memory
at_ 0000h...0100h will have been set up with all the
necessary slot switching and interrupt jumps, and a null
command line at address 0080h. See section 2.4 and the
"Program Interface Specification” for more details of the
MSX-DOS environment.

Note that unlike MSX-DOS 1, the boot sector is never
called with the carry flag set and so the boot sector code
is not used to actually boot up the system. Also note that
the "CALL SYSTEM" command in disk BASIC can be used even if
the system boots straight into disk BASIC, and it can pass
a command to the "REBOOT" entry which it calls and this
command will be executed by COMMAND2.COM when it is loaded
and started up by MSXDOS2.SYS.

When disk BASIC is first started up, it looks for a file
called "AUTOEXEC.BAS" and executes it as a BASIC program.
This is only done when disk BASIC is started up
automatically, not if it is entered from MSX-DOS with the
“BASIC" command. In this case a command can be given to
disk BASIC as a parameter to the "BASIC" command.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 6

MSX-DOS 2 System Specification 2.3. Disk BASIC Environment

2.3 DISK BASIC ENVIRONMENT

The disk BASIC environment 1is active whenever

MSXD0S2.SYS is not resident in memory. Either disk BASIC,
or some other MSX application program (usually in a
cartridge ROM) will be running. In this environment MSX-

DOS function calls can be made by calling address OF37Dh.
A few of the functions are not available or are slightly
different in this environment, the details are explained in
the "Function Specification" document.

The disk ROM initialization will enter the program with
the MSX BIOS ROM in page-0, the program's slot in page-l
and the RAM slot in pages 2 and 3. The RAM paging will be
set up with the basic 64k of RAM paged in. This will
normally be segments 0, 1, 2 and 3 but programs should NOT
assume this, they can find the segment numbers by using the
"GET_Pn" mapper routines. The stack will be in page-3.

The MSX system variable "HIMEM" will be set up correctly
to the lowest address in page-3 RAM which is being used. A
program may use memory from here on downwards in the usual
way for MSX applications. Above this address will be all
of the disk systems fixed work, page-3 resident code,
function call and interrupt stacks and buffers for
parameter copying.

The program may do any slot switching and RAM paging
which it wants in pages 0, 1 and 2 but must always leave
page-3 alone. If it puts anything other than the MSX BIOS
ROM in page-0 then the program must of course ensure that
the interrupt and slot handling entry points are present.

2.3.1 FUNCTION CALLS

When a function call to OF37Dh is done the code there
does an inter-slot call to the master ROM in page-1 (after
saving register IX). The function entry code in the master
ROM does a stack switch to a dedicated stack in page-3,
unless this stack is already active. It then remembers the
current slot selections and RAM paging state and copies any
parameters into dedicated buffers in page-3. After this it
enables the mapper RAM slot in pages O and 2, pages the
kernel code and data segment it and calls the DOS kernel
function dispatcher in page-0.

On return the paging and slot selections are set back to
the state they were on entry, any results are copied from
page-3 buffers back to the user's memory and the stack is
restored. All registers including the alternate and index
registers are corrupted by all function calls.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 7

MSX-DOS 2 System Specification 2.3. Disk BASIC Environment

Because the inter-slot call to page-1l is done before the
stack switch, the program must not have the stack in page-1l
when making a function call. The stack may be in any other
page and for most programs it will probably be in page-3.

The parameters which are copied are any memory resident
parameters. such as FCB's, fileinfo blocks and pathname
strings. Because they are copied AFTER the inter-slot call
has been done, they must not be in page-l unless they are
actually in the master disk ROM. Thus for example disk
BASIC (which is in the master disk ROM) can use pathname
strings in page-1 but any other program must copy them into
some other page.

Disk transfer areas and environment strings are not
copied through page-3 buffers, they are accessed using RAM
paging routines. This means that they will always be
accessed in RAM, in whichever RAM segment was paged into
the appropriate page of the RAM slot when the function call

was made. This is the case even if the RAM slot was not
actually selected in that page. Thus for example if a ROM
resident program (such as disk BASIC) wants to get the
value of an environment string, it must copy the

environment string name into RAM before making the function
call, it cannot use the name string directly from ROM.

2.3.2 DISK ERRORS

when the DOS kernel detects a disk error it calls an
internal error vector in page-3 at “KDSK_VECT". When the
disk BASIC environment is active this vector will jump to a
translation routine which translates the MSX-DOS error code
into an error code compatible with MSX-DOS 1 (in fact the
error code as returned by the disk driver) and then calls a
user error routine via a pointer at "DISKVECT" in page-3.

This ensures compatibility of disk error routines in the
disk BASIC environment while allowing more flexibility with
errors in the MSX-DOS environment (see below) . A program
making MSX-DOS function calls from the disk BASIC
environment must always have a "DISKVECT" routine defined
as there is no default error handling built in to the ROM.
It may be that disk BASIC will set up a default error
handler which may be used by other programs.

The “DISKVECT" routine will be called with the same RAM
paging and slot selections as when the function call was
made, but the stack will be the internal MSX-DOS stack in
page-3 not the program's stack. The error routine can make
certain MSX-DOS calls but must be careful to avoid
recursion. The “"Function Specification" document defines
which function calls are safe to make in error routines.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 8

MSX-DOS 2 System Specification 2.3. Disk BASIC Environment

The parameters and results for the "DISKVECT" routine

are as below. Registers A and C are compatible with MSX-
pOos 1, the others are provided to allow more sophisticated
error handling. It is recommended that the new error code

in A' is used by all new programs since it can easily be
translated into an error message using the explain

function:.
Parameters: A = Drive number
C = MSX-DOS 1 compatible error
(eg. not ready = 02h)
A' = MSX-DOS 2.00 error code
(eg. not ready = .NRDY = FCh)
B = Flags - b0 set => writing
bl set => ignore not recommended
b2 set => auto-abort error
b3 set => sector number is valid
DE = Sector number (only if b3 or B is set)
Results: C = 0 => Ignore '
1l => Retry
2 => Abort
The “DISKVECT" routine returns a code in register C to
indicate the desired response. All other main, alternate
and index registers may be destroyed. If the routine
returns "abort" then the “BREAKVECT" routine will be jumped
to (see the next section), otherwise the error will be
retried or ignored from within MSX-DOS. It is strongly

recommended that a program which wants to abort a disk
error should return C=2 to indicate "abort" and then «carry
on processing when its "BREAKVECT" routine is called.
However for compatibility it is also allowable for the
“DISKVECT" routine to jump back to the program without
returning rather than returning a response code. In this
case the program must set up its own stack before making
any MSX-DOS function calls.

2.3.3 PROGRAM TERMINATION

The “BREAKVECT" vector will be called by MSX-DOS
whenever a program termination condition occurs. The
routine will be entered in exactly the same environment as
the original MSX-DOS call was made, with the user stack
active and set as if it was just about to return from the
MSX-DOS call. 1f a termination condition occurs within a
nested MSX-DOS call (presumably one made from a "DISKVECT"
routine) then all nested calls will be aborted.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 9

MSX-DOS 2 System Specification 2.4. MSX-DOS Environment

The "BREAKVECT" routine is passed an error code in
register A which specifies the error condition which caused

the termination. There is also a secondary error code in
register B which will always be zero except for ".ABORT",
“.INERR" and ".OUTERR" errors. These error codes are

exactly the same as for a user error routine in the MSX-DOS
environment as described in the "Function Specification"
document under the "define abort routine" function call
(although this function itself is not available under the
disk BASIC environment).

2.4 MSX-DOS ENVIRONMENT

The MSX-DOS environment is set up when the *MSXD0OS2.SYS"
file is read in and executed by the disk ROM, and remains
active until a "BASIC" command is typed to transfer back to
disk BASIC. MSX-DOS can be entered either automatically at
boot up time, or by a “CALL SYSTEM" command from disk
BASIC. When it is started from disk BASIC, a command can
be passed to be executed by the command interpreter and if
no command is given then it will execute the "REBOOT.BAT"
file. When it is started up automatically at boot time it
will execute the "AUTOEXEC.BAT" file. '

When "“MSXD0S2.SYS" is loaded and executed it relocates
itself to the top of available memory in page-3 and
reserves some space here for buffers. It will overlay the
page-3 parameter copying buffers which were used in the
disk BASIC environment since it does its own parameter

copying. This means that the existing OF37Dh function
entry code cannot be used, so this location is set to jump
to "MSXDOS2.S¥YS"'s own function entry code. Another

function entry point is set up at location 0005h and this
is the one normally used by programs although the two are
in fact identical.

"MSXDOS2.SYS" loads and runs the "COMMAND2.COM" command
interpreter program. This actually runs as a normal
transient program which has the capability of loading and
running other programs. It patches into the jumps at 0000h
and 0005h and leaves a small portion of itself resident
while it runs a transient program and this code gets
control when the transient program terminates.

More details about the MSX-DOS environment and other

aspects of transient programs are contained in the "Program
Interface Specification”.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 10

MSX-DOS 2 System Specification 2.4. MSX-DOS Environment

A transient program will be entered with the mapper RAM
slot in all four pages and the basic 64k of RAM paged in.
when making MSX-DOS function calls, the entry code in
"MSXDOS2.SYS" will page the kernel code and data .segments
in as required but will not do any slot switching at all.
This means that it is essential that the mapper RAM slot is
selected in pages 0, 2 and 3 when an MSX-DOS function call
is made. Page 1 will normally be the mapper RAM'slot as
well although it can be any other slot if required.

The function call entry code does much the same
parameter copying as in the disk BASIC environment, but
because there is no inter-slot call to page-l, parameters
can be passed in any of the four pages. Environment
strings and disk transfer areas must always be in mapper
RAM, even if some other slot is in page-1l, because they are
accessed by RAM paging routines.

Disk errors and program terminations are handled by
resident code in "MSXD0S2.SYS" which gets control from the
"KDSK_VECT" and "KAB_VECT" vectors. This code has a
default action of prompting the user in the case of a disk
error and returning to "COMMAND2.COM" in the case of an

abort. Function calls are provided to allow a transient
program to define its own disk error and abort routines in
place or or as well as the default ones. Details of these

functions are in the "Function Specification" document.

2.5 INTERRUPTS

Because the kernel code segment is paged into page-0
when a function call is done, it must contain slot
switching entry points and also an interrupt entry point.
These all jump to permanently resident code in page-3 which
is set wup during the disk ROM initialization procedure.
There are identical jumps in the kernel code segment and
the page-0 TPA segment when the MSX-DOS environment 1is
active. The interrupt entry point does a stack switch if
necessary to a stack in page-3, enables the MSX BIOS ROM in
page-0, calls the normal interrupt entry point in this ROM
and restores the kernel code segment to page-0 afterwards.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 1l

MSX-DOS 2 System Specification 2.5. Interrupts

No resetting of the RAM paging is done when an interrupt
occurs. This means that when an interrupt routine is
called (via the "H.TIMI" or "H.KEYI" hooks) it may have any
RAM segments at all in pages 0, 1 or 2 of the RAM slot. It
can of course assume that the usual page-3 RAM segment is
in page-3. This is not normally a problem because the RAM
slot will not necessarily be enabled in any of these pages
anyway, even in the old system. If an interrupt routine
wants to access RAM in any of these three pages then it
must enable the RAM slot and page the required RAM page in,
and it must reset both of these before returning.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 12

MSX-DOS 2 System Specification 3. Disk Device Interface

3.

DISK DEVICE INTERFACE

The MSX-DOS 2.00 interface to disk device drivers is
compatible with the interface for MSX-DOS 1. It is
designed so that MSX-DOS 2 can work with old disk drivers,
and that new device drivers can be written which will make
use of the improvements in MSX-DOS 2.00 and will still work
with MSX-DOS 1. However a device driver can be
considerably simplified if it is only required to work with
MSX-DOS 2.00 and later.

A disk driver is a separate module supplied by each
manufacturer to interface MSX-DOS to a particular piece of
disk hardware. It is linked with the rest of the system to
produce a complete disk ROM.

Up to four disk drivers can be supported, each in a
separate slot, and each driver can support several physical
disk drives. There is a limit of eight to the total number
of drives which the system can support, including the RAM
disk which provided by the master disk ROM.

All memory management required by the disk driver is
purely in terms of slot switching. The disk driver need
not know about the mapper chip at all. This is to ensure
compatibility and also to keep the interface reasonably
simple. The controlling code in the disk ROM will ensure
that the correct RAM segments required for data transfer
are paged in as required.

PUBLICS AND EXTERNALS

The following symbols must be declared as PUBLIC by the
disk driver:

MYSIZE - Size of the page-3 RAM work area required by
the driver 1in bytes. This should be as
small as possible and does not normally
include a sector buffer because there is a
general purpose sector buffer always

available (see "S$SECBUF" below) . If this is
set to OFFFFh then the driver will not be
linked in. This is useful if it is desired

to have a built in disk ROM with no driver.

SECLEN - Maximum sector size for media supported by
this driver. For version 2.00 this must
always be ©512 since no other sector sizes
are supported.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 13

MSX-DOS 2 System Specification 3. Disk Device Interface

DEFDPB - Base address of an 18 byte "default" DPB for
this driver. This is only required for
compatibility with version 1, version 2.00
makes no use of the data here and so the
symbol can point anywhere. See the MsSX
Technical Data Book for the DPB format if
MSX-DOS 1 compatibility is required.

The following routines should be declared as PUBLIC by
the disk driver. They may be called via an inter-slot call
and so may be entered with interrupts disabled. If the
routine will take a significant time to execute then
interrupts should be re-enabled (without calling ENAINT).

INIHRD - Initialize hardware

DRIVES - Return number of drives in system
INIENV - Initialize work area

DSKIO - Sector read and write

DSKCHG - Get disk change status

GETDPB - Get disk parameter block (DPB)
CHOICE - Return format choice string
DSKFMT - Format a disk

MTOFF - Turn drive motors off
OEMSTATEMENT - Used for system expansion

A disk driver may use any of the defined addresses
within the MSX system, although these must be used with
care. In particular the following variables which are
declared as PUBLIC in other modules of the disk ROM may be
used:

SSECBUF - Address of a 512 byte temporary buffer
which may be used for any purpose by
the disk driver.

RAMADO \
RAMAD1 \\ Slot address of the RAM in each of the
RAMAD2 / four pages. These four will always be

RAMAD3 / equal in MSX-DOS 2.00.

RAWFLG - Read-after-write flag. 1f non-zero then
each write sector operation should be
verified by the driver.

DOS VER - Version number of the DOS. Will be zero
- for any version earlier than 2.00. For
version 2.00 it will have the value
20h. Later versions will be greater
than 20h. Can be tested by multi-
version drivers to optimize their

operation for the current version.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 14

MSX-DOS 2 System Specification 3. Disk Device Interface

The following routines are declared as PUBLIC in other
modules of the disk ROM and may be used by disk drivers as

required:
. PROMPT - Prints a message for two drive emulation on
a single drive.
DISINT - Call immediately before disabling interrupts

if they will be disabled for a significant
period of time. -

ENAINT - Call immediately before re-enabling
interrupts if DISINT was called.

SETINT - Setup routine at (HL) as a timer interrupt
routine (50Hz/60Hz).

PRVINT - Calls previous timer interrupt routine,
should be called at the end of the routine
set up by SETINT.

GETSLOT - Get disk driver's slot address into A. Only
preserves DE, IX and IY.

ENASLT - Enables a slot at address specified by A:HL.

SDOSON - Enables master disk ROM slot in page-l.

SDOSOFF - Enables RAM slot in page-l.

GETWRK - Get address of disk driver's work area into
IX and HL. Only preserves DE and IY.

DIV16 - BC := BC/DE, remainder in HL.

XFER - Exactly emulates an LDIR, preserving AF, IX

and IY. Before the LDIR, RAM will be put
into page-1 in place of the disk driver ROM.
This is used when transferring data to/from
page-1.

3.2 DISK DRIVER INITIALIZATION

At initialization time the "INIHRD", "DRIVES" and
“INIENV" routines of the disk driver will each be called
once, it that order. None of these three routines will

ever be called again.
"INIHRD" should just initialize the hardware. wWhen this

routine is called the disk driver workspace has not yet
been allocated.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 15

MSX-DOS 2 System Specification 3. Disk Device Interface

"DRIVES" should determine the actual number of drives
connected to the controller and return this as the number
of drives that it supports in register L. When this is
called the disk driver workspace RAM will have been

allocated. If there is only one drive connected, and the
z-flag is clear on entry, then this routine should return
the value "“2" and must then logically support two drives

using the "PROMPT" routine. It is not acceptable to return
L=0 from this function.

“INIENV" should just initialize the disk driver's work

area ready for the driver to be used. The address of the
work area can be determined by calling the "GETWRK"
routine.
INIHRD - Parameters: None

Results: None

May corrupt: AF, BC, DE, HL, IX and IY.

DRIVES - Parameters: Z-flag. If clear (NZ) then two
drive emulation should be enabled
if there 1is only one physical
drive.

Results: L = Number of drives supported.
May corrupt: F, HL, IX and IY.

INIENV - Parameters: None

Results: None
May corrupt: AF, BC, DE, HL, IX and IY

3.3 DISK READ AND WRITE ROUTINE

DSKIO - Parameters: Carry flag - clear => read
set => write
A = drive number O0....
B = number of sectors to transfer
C = media descriptor byte
DE = first logical sector number
HL = transfer address

Results: Carry flag - clear => successful
set => error
If error: A = error code
B = remaining sectors
May corrupt: AF, BC, DE, HL, IX and IY.

This routine does the actual work of reading and writing
sectors to the disk. The logical sector number starts at
zero and the driver must map these sectors to physical
track/side/sector numbers depending on the value of the
media descriptor byte passed in register C. The data must
be transferred to or from RAM in the slots specified by
RAMADO...RAMAD3, using the currently selected mapper RAM
segments.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 16

MSX-DOS 2 System Specification 3. Disk Device Interface

In MSX-DOS 1 the transfer could be to any one of the
four pages and disk drivers had to go to great lengths to
do a transfer if it was in page-l. This is still necessary
if a disk driver is to remain compatible with MSX-DOS 1.
However MSX-DOS 2.00 will always do its transfers to page-2
or page-3 and the appropriate RAM will be directly
available. Therefore - if a disk driver does not need to
remain compatible with MSX-DOS 1, it does not need to do
‘any of the complex copying of code and slot switching which
earlier drivers had to do. This 1is a considerable
simplification.

Any errors should be retried a suitable number of times

before being returned to the system. When an error 1s
returned it will be reported to the user as an "Abort,
Retry or 1Ignore" error. The defined error codes are as
follows (those errors marked as "new" should only be
returned for MSX-DOS 2.00 and later). "Unexpected disk
change"” may be returned if a "drive door opened" signal is
seen, the high level code will then check to see if it is

actually the same disk in the drive.

0 - Write protected disk
2 - Drive not ready
4 - Data (CRC) error
6 - Seek error
7 - Record not found
10 - Write fault (verify error)
12 - Other error
new 18 - Not a DOS disk
new 20 - Incompatible disk
new 22 - Unformatted disk
new 24 - Unexpected disk change

3.4 DISK CHANGE DETECTION ROUTINE

DSKCHG - Parameters: A = drive number 0....
B =20
C = media descriptor byte
HI. = base address of DPB

Results: Carry flag - clear => successful
set => error
If success: B = 0lh => not changed
00h => don't know
FFh => changed
If error: A = error code
May corrupt: AF, BC, DE, HL, IX and IY.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 17

MSX-DOS 2 System Specification 3. Disk Device Interface

This routine can be considerably simplified for disk
drivers which only need to work with MSX-DOS 2.0 and later.
If the disk hardware can determine whether the drive door
has been opened or not then it should return B=1 (not
changed) or B=FFh (changed) as appropriate. "Changed"
should be returned whenever the door has been opened,
without accessing the disk since it is not the driver's
responsibility to decide whether it is actually still the
same disk or not. If the hardware cannot determine whether
the door has been opened then it should return B=0 (not
sure) .

This 1is all that is necessary for MSX-DOS 2.00. This
function should never access the disk and can thus be very
fast. The media byte and DPB address parameters are not
required in this case.

If compatibility with MSX-DOS 1 is required then this
routine must do considerably more work, involving actually
working out the disk format if it returns "changed" (B=FFh)
or "not sure" (B=00h). This is not documented here since
it is only required for MSX-DOS 1. See the MSX Technical
Data Book for details.

3.5 GET DISK PARAMETER BLOCK ROUTINE

This routine will never be called by MSX-DOS 2.00 since
it does its own disk format determination by reading the

boot sector. For disk drivers which do not need to be
compatible with MSX-DOS 1, this routine can simply be a
“RET" instruction. For drivers which do need to be

compatible this function must be implemented as defined in
the MSX Technical Data Book for MSX-DOS 1.

If any disk driver needs to access disks which do not
have a valid parameter block on the boot sector (see
section 3.7), and for which the FAT-id byte at the start of
logical sector 1 cannot be interpreted as one of the
standard 8 MSX floppy disk formats, then it must intercept
any reads of logical sector 0 (the boot sector) and return
a suitably constructed boot sector containing correct

parameters for MSX-DOS to use.

3.6 DISK FORMAT ROUTINES
CHOICE - Parameters: None

Results: HL = Address of ASCIIZ choice string
May corrupt: AF, BC, DE, HL, IX and IY.

Copyright (1986) ASCII Corp; 86/11/26 (version 2.00) page 18

MSX-DOS 2 System Specification 3. Disk Device Interface

DSKFMT - Parameters: A = choice from user (0lh...09h)
D = drive number O0...
HL = base address of work area
BC = length of work area
Results: Carry clear => successful
set => error
If error: A = error code

May corrupt: AF, BC, DE, HL, IX and IY.

The "“CHOICE" routine will be called before formatting a
disk and it simply returns a pointer to a string specifying
the choices of format available. The user's response (0lh
to O09h) will then be passed to the "DSKFMT" routine. An
extension in MSX-DOS 2.00 allows a pointer value of OFFFFh
to be returned in HL to indicate that the disk driver does
not allow formatting.

The "DSKFMT" routine must format the disk according to

the user's choice specified in register A. - The workspace
area pointed to by HL may be used for any purpose such as
building up a track image if required. The disk must be

formatted physically and a suitable boot sector must be
written to it defining the disk format in a parameter block
(see section 3.7).

If the boot sector written by the disk driver does not
contain the "VOL_ID" string at the appropriate offset, then
the DOS kernel will add this itself, and will put its own
boot code from offset 1Eh up to a maximum of offset FFh.
1f the disk driver does put the "VOL_ID" string in the boot
sector then it will be assumed that it has also put
suitable boot code at offset 1Eh and this will not be
disturbed. However in all case the DOS kernel will put a
randomly generated volume id after the "VOL_ID" string and
will zero the dirty disk flag.

Most disk drivers therefore do not need to put anything
in the boot sector from offset 1lEh onwards. They only need
to initialize this area if they want some special purpose
boot code. Note that MSX-DOS 2.00 only uses the boot code
on the disk for starting up disk BASIC environment
programs, not for starting up MSX-DOS itself. The default
boot code put on by the DOS kernel is therefore simply a
"RET" instruction.

After setting up the boot sector, the driver must then
initialize the FATs and root directory. The FATs should
have a FATid byte in the first byte (0OF8h...0FFh) and two
bytes of OFFh immediately after. The rest of the FATs and
the root directory should be zeroed. This initialization
is left up to the driver so that it can mark bad disk areas
if desired.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 19

MSX-DOS 2 System Specification 3. Disk Device Interface

The error codes which may be returned are the same as
for "DSKIO" except for the following additional errors
which are allowed:

12 - Bad choice parameter
14 - Insufficient memory
16 - Other error

3.7 BOOT SECTOR FORMAT

Below is the format of the boot sector for MSX-DOS 2.00
It is identical to the boot sector for version 1 except for
the addition of the optional volume-id and dirty disk flag
fields.

The volume-id is a 28-bit pseudo random number which the
DOS kernel writes to the disk after it has been formatted.
It serves as a "unique" disk identifier so that the system
can tell when the disk has been changed. The dirty disk
flag 1is used to support un-deletion and is set to zero by
the DOS kernel after the disk has been formatted.

00h - OEBh \
Olh - OFEh > Dummy 8086 "JMP SHORT $" instruction
02h - 090h / followed by "NOP".
O3h..0Ah - "IS-SYS * 8 character manufacturer's identity
string, not accessed by the system.
0Bh..0Ch - Bytes per sector \
0Dh - Sectors per cluster \
OEh..OFh - Reserved sectors
10h - Number of FATs This is an
1l1h..12h - Number of root dir. entries MS-DOS 2.00
13h..14h - Total sectors on disk > bios parameter
15h - Media descriptor block.
16h..17h - Sectors per FAT
18h..19h - Sectors per track

1Ah..1Bh - Number of heads /
1Ch..1Dh - Number of hidden sectors /

1Eh..20h - "JP BOOT" MSX-DOS boot entry point. Must jump
to boot code located above this defined part
of the boot sector. May just be a "RET".

21h..3Fh - Reserved.

40h..45h - "VOL_ID" string used by the system to tell

whether the disk contains a valid volume-id
and dirty disk flag or not.

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 20

MSX-DOS 2

System Specirication 3. Lisk Device Interrace

46h - Dirty disk flag. Controls un-deleting on the
disk. 1Initially zero.
47h..4Ah - 4 byte unique volume id. Each byte must be in
the range 00h..7Fh selected randomly at
format time by the DOS kernel.
4Bh..FFh - Available for boot code or any other machine
dependent purpose. Not accessed by the
system except at boot time.
100h.1FFh - Not wused. This area is not copied to 0CO00h at

3.8

boot time, only the first 100h bytes of the
sector are copied. Therefore it cannot be
used for boot code.

SUMMARY OF CHANGES

This section summarizes the changes in the disk driver

specification from MSX-DOS 1.

1.

24

Sector size must always be 512 bytes.
MYSIZE can be OFFFFh to disable driver.

DPB's not wused at all. DEFDPB can point anywhere,
GETDPB routine never called, DSKCHG need never update
the DPB. All format determination is done by the DOS
kernel reading the boot sector or the FAT-id byte.

Disk transfers always done to page-2 or page-3 which
will always be paged in when driver is called. Disk
drivers should not need to do any paging or copying of
code to page-3.

Additional error codes defined for returning from
DSKIO routine.

Kernel code segment will usually be in page-0 when
disk driver is called. This should not matter to the
disk driver at all.

CHOICE routine can return HL=0FFFFh to indicate that
this driver does not allow formatting.

DSKFMT routine need not initialize root directory or
FATs and need not put any boot code on the boot
sector. Must put parameter block on the boot sector
and may optionally put the "VOL_ID" indicator on.

++++++++++ END OF DOCUMENT ++++++++++

Copyright (1986) ASCII Corp. 86/11/26 (version 2.00) page 21

